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ABSTRACT

Presentation of survey results, social science data, and other geospatial statistics requires careful
attention in order to facilitate “fast and accurate” interpretation. Adding dimensionality can eas-
ily saturate the observer, leading to confusion instead of adding perspective. We produce over a
dozen techniques to facilitate multivariate geospatial visualization, filter them with pilot groups,
and then design a computer-based human experiment to evaluate their relative performance. In
the experiment, the participants locate (with a mouse click) regions with extreme primary or sec-
ondary values and then later estimate numerically the values of these variables. We analyze these
data with linear and logistic regression and general additive models to characterize the variance
due to a learning effect, and then use general linear mixed-effects models to block out the variabil-
ity due to individual participants and the independent and randomly-generated survey data used to
generate the experiment plots. The effectiveness of a particular technique depends heavily on the
goal of the presentation: a technique that provides relative perspective without distracting from the
primary variable may not facilitate estimation that is as accurate as other techniques. Four scenar-
ios are provided to qualify the presenter’s intent. Only one technique performed poorly in all four
scenarios and only one technique was average in all four; all remaining varied from very good to

very bad between scenarios.
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Executive Summary

Survey results, social science data, and other geospatial statistics are typically presented in brief-
ings in univariate form, denying the observer insight into relationships with other variables or the
use of descriptive measures such as confidence or uncertainty. Adding layers or dimensionality can
easily saturate the graph, creating confusion instead of adding the intended perspective. More so,
“confusion” is relative to each individual viewer: analysts more experienced in data exploration
might quickly recognize the scope of a graph, while others might overlook the intended salient

points.

In presentations including geospatial statistics, a balance must be made between rapid absorption
and sufficiency of the presented data. Simpler univariate charts or plots can easily and intuitively
demonstrate both the location or mean of data and their associated variability, but fail to provide
areal relevance or comparison. Adding multi-dimensionality to graphs risks tipping beyond a point

of tolerance or patience, resulting in misinterpretation, confusion, or dismissal.

The goal of this research is to identify graphical methods of communication that easily and effec-
tively communicate quantitative data and their measures of uncertainty to decision makers. These
are two separate dimensions, where for a graphical method to “easily communicate,” we mean that
it must be both intuitive and not require too much time or effort on the part of the recipient to un-
derstand, and “effective communication” translates into the numerical accuracy of the observer’s

interpretation.

We collaborated with Center for Educational Design, Development, and Distribution (CED3) to
design over a dozen different techniques for presenting this added dimension. We brought these
techniques to pilot groups to reduce the number to a more management number of techniques for
an experiment. The list of candidate techniques are shown in the results plots, Figure 1. Techniques

(b), (¢), (), (), (1), and (j) survived the pilot group to be used in the experiment.

These techniques were then presented to 28 participants in a computer-based experiment (samples
shown in Figure 2), asking them to first LOCATE the highest or lowest value of the average or
margin of error, and then to ESTIMATE the value of a country in the same style of maps. From
both of these series, we measure time to respond as a proxy for “easily communicate,” and the
error—calculated as the squared difference between their selection and the actual answer—as a
proxy for “effectively communicate.” We condense these results into a single binary variable that

indicates whether the participant’s response was “fast and accurate” or not; we group “fast and

XV
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Figure 1: A colormap (choropleth) plus the six techniques that were used in the experiment. (The
techniques named “diamonds” and “dots” might not display well if not in color.)

inaccurate” with “slow” regardless of accuracy since if we do not communicate the data quickly

and accurately then the attempt was ineffective overall.

In order to properly evaluate the relative performance of each of the six techniques, we first char-
acterize and block the sources of other variability in the data. The variances of each participant
are unique, as are the variances of each randomly-generated survey data used to create the ques-
tions in the experiment. Another large source of variance in the data is in a learning curve. To
properly block for this last source, we formed regression and additive models to approximate it

formulaically and eventually block for it in a final mixed-effects model.

We categorize the results into two mechanisms from a mental-processing perspective: the LOCA-

TION questions tested for recognition of relative values between countries, and the ESTIMATION

Click the country with the LARGEST ERROR Estimate the ERROR 1 0

Response Margin of Error
100%
75%

50% 25%
25%
0% 0%

Response Margin of Error
100%
75%
50%.
25%
0%

Figure 2: Sample for the LOCATION (left) and ESTIMATION (right) phases of the experiment.
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questions tested for the ability to evaluate the numbers and quantify them on an absolute scale.
We also split these categories into two forms of presentations: where the secondary variable (the
margin of error of the country’s average in this experiment) is merely informative or where it is a
strong consideration. We summarize the relative performance of each of the techniques to qualify
the speed of processing and error, allowing for a more informed choice of techniques. The relative

performance is displayed in Figure 3.

The best performing technique is dependent on the scenario chosen. For instance, if the goal
of the presentation is to display survey average responses per country and the margin of error is
just informative, then the lower-left chart (“Recognize Both Variables) would indicate the pole
technique as the best. However, if the goal is for the observers to be able to accurately quantify
both variables then “Estimate Both Variables™ is appropriate and shows that either of the hexes or

circspacing techniques might be appropriate.
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CHAPTER 1

Introduction

Survey results, social science data, and other geospatial statistics are typically presented in brief-
ings in univariate form, denying the observer insight into relationships with other variables or the
use of descriptive measures such as confidence or uncertainty. Adding layers or dimensionality can
easily saturate the graph, creating confusion instead of adding the intended perspective. More so,
“confusion” is relative to each individual viewer: analysts more experienced in data exploration
might quickly recognize the scope of a graph, while others might overlook the intended salient

points.

Specifically, in briefings to decision makers using geospatial statistics, a balance must be made
between rapid absorption and sufficiency of the presented data. Adding multi-dimensionality to
graphs risks tipping beyond a point of tolerance or patience, resulting in misinterpretation, confu-
sion, or dismissal. To understand this risk, Hyman (1953) stated that the “reaction time (to decide)
seems to be a monotonically increasing function of the number of possible stimuli.” The stimuli
in these graphs are the variables presented, and the decision is the comprehension of the overall
graph. This suggests that limiting the number of “things” in a graph — whether variables or added
flair intended to highlight portions — will also minimize time necessary for interpretation for a de-
cision. Ultimately, this form of communication can be summed up as: “a great visualization can

help create a shared view of a situation and align folks on needed actions” (Sviokla 2009).

Simpler univariate charts or plots can easily and intuitively demonstrate both the location or mean
of data and their associated variability. A trivial example of univariate and multivariate data in Fig-
ure 1.1 documents an experiment involving growth of guinea pig teeth. The experiment controlled
the dosage of vitamin C as well as the supplement source. The left portion shows a single variable,
tooth length, as a box plot and all of the contributing data points. The right portion shows the
same information broken down into two contributing variables: the dose of vitamin C given along
the outer x axis, and the type of supplement given on the inner x axis (per vitamin C dose). From
this chart, for instance, the observer can determine that for 0.5 mg doses and supplementing with
ascorbic acid (left-most yellow box plot), not only is the median in the lower portion of the inter-
quartile range (IQR), but the whiskers are not of equal size, implying a non-uniform distribution of
data points. Contrast this with the right-most box plot where the median is roughly centered in the

IQR and the whiskers, though not identical, imply a less-skewed distribution. This type of display



gives an intuitive visualization for the distribution of the data and permits the observer to do fairly

simple comparisons between box plots.

Sample Univariate and Multivariate Boxplots
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Figure 1.1: Comparison of univariate (left segment) with multivariate factored data of guinea
pigs’ teeth length based on supplement type and vitamin C dose. (From R Core Team (2013),
ToothGrowth dataset.)

As simple as it appears in this example, adding a geospatial tie removes the ability to use these
axes for differentiation. A common fix for complexity in geospatial results is over-simplification
by omitting a measure of the variability. The assumption that the mean alone will depict the
whole story is fundamentally flawed. When calculating descriptive statistics for survey results, for

example, the mean for a region must be paired with the margin of error!.

To take this example further, imagine the average response to a survey question as depicted for
Mali, the center country, in Figure 1.2. The average might show roughly a 70% average response
indicating a slightly-supportive populace. If the distribution of respondents’ answers matched the
histogram on the left of Figure 1.3 then this this might not be a problem. However, if their answers
more closely matched the right chart with a bimodal distribution, despite having the same mean
response as the left chart, the variability indicates a completely different response pattern to the
survey question. Omission of this information (perhaps in the form of a standard deviation or

margin of error measure) risks missing a key feature of the data.

'A margin of error is a half-width of a 95% confidence interval for the sample mean. As an example, if a survey
statistic is given as “63% =+ 5%”, this means that the actual population average is between 58% and 68% with 95%
confidence.
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Figure 1.2: A comparison of a univariate plot (left) with one technique demonstrating a bivariate
display (right). In the univariate display, it might be “obvious” to an observer that the country in
the middle has the highest response and (for example) is therefore deserving of more funding and
effort. However, the same data on the right also demonstrates a relatively high margin of error,
which indicates that the results for Mali is highly uncertain. (In this example, each tick in the pole
represents 5% of error in the estimate of the mean, so a taller pole represents more error. Though
these charts are still usable in grayscale, they are designed to be read in color.)

Unimodal Response Bimodal Response

Population (%)
Population (%)

Unsupportive Unsupportive

Neutral . Neutral .
Supportive Supportive

Figure 1.3: Sample histograms, both demonstrating the same mean response for the region. On the
left, the majority of the country’s populace is neutral. On the right, the populace is very polarized
despite having the same mean response as the histogram on the left. (The colors used in these
histograms match the colors used in Figure 1.2. As such, they are also designed to be read in
color.)

Analysts do not have standardized techniques for displaying both the average and the variability

together consistently or intuitively on geospatial plots, while non-analysts examining the plots



might not realize that it is missing. The challenge is to provide both pieces of information in such

a way that the observer intuitively understands the relative importance of each variable.

1.1 Easy and Effective Graphical Communication

The goal of this research is to identify graphical methods of communication that easily and ef-
fectively communicate quantitative data (and their measures of uncertainty) to decision makers.
These are two separate dimensions, where for a graphical method to “easily communicate,” we
mean that it must be both intuitive and not require too much effort on the part of the recipient
to understand. This latter concept we refer to as the cognitive effort required by the recipient to
decode and understand the graphic. For a graphic to “effectively communicate” we mean that the
graphic accurately conveys the quantitative result to the recipient; that is, after looking at the graph

the recipient can correctly specify or state the requisite numerical quantity.

The Merriam-Webster Dictionary defines cognitive as “of, relating to, being, or involving con-
scious intellectual activity (as thinking, reasoning, or remembering)” (Cognitive 2013). Thus,
cognitive effort is the mental workload required in the conscious decoding of a graphical display.
Conversely, intuition is defined as “the power or faculty of attaining to direct knowledge or cogni-
tion without evident rational thought and inference” (Intuition 2013). Thus, an intuitive graphic
should require little cognitive effort while a non-intuitive graph should require significant cognitive
effort. For the purposes of this research, we use these two words to qualitatively characterize how
easy or difficult it is for a recipient to correctly interpret the information in a graphical display of
data.

We note that the terms have specific technical meanings in various academic fields, ranging from
psychology to artificial intelligence and education, so though volumes of literature exists, we use
the terms more generally and generically. Since quantitatively measuring, for example, the actual
cognitive effort required to interpret a graph in any technical sense is beyond the scope of this

research, we do not find it necessary to adopt any particular precise definition.

Communication is a two-way mechanism, and the observer’s skills and abilities are specifically
relevant to how intuitive a particular graphical display may be. Though these tools might be useful
to analysts to facilitate exploratory data analysis, for the purposes of this research, the goal is to
design graphical displays that do not require specialized training or skills to correctly and easily

interpret the data.



1.2 Problem Definition

As stated in the previous section, the problem this thesis addresses is the identification of graphical
techniques that communicate quantitative data for easy and effective interpretation by decision
makers. In particular, this research focuses on geospatial areal data that must be displayed on
map and for which the display of both a statistic (for example, an average) and a measure of the

uncertainty of that statistic must be displayed simultaneously.

This problem arises, for example, with survey data collected in some large region where the desire
is to plot the data by sub-region. This is areal data, meaning that each statistic to be plotted
corresponds with an area on the map, such as a province, state, or county. This is in contrast
to point data, where each observation can be individually located on a map by its coordinates.
The individual observations in areal data such as surveys can only be attributed to a region on
the map, not a specific point. Furthermore, because the data to be plotted arise from a sample of
the population, a measure of uncertainty is important in order to communicate to the recipient the

precision of the data.

To address this problem, this research first explored a variety of techniques for displaying several
types of data with experts in graphical design. These were subsequently culled to those that seemed
most promising. These methods were then implemented and incorporated into a set of computer-
based displays used in an experiment to measure the speed of interpretation (a proxy for ease)
and the accuracy of value estimation (a proxy for effective) of multivariate areal survey results.
The experiment was run with 28 participants, largely Naval Postgraduate School officer-students
who are generally representative of non-analyst decision makers. The results of the experiment
were then used to determine which technique provided the the best balance between ease of use
and accuracy. These results were then combined into a computer-based utility allowing users to

dynamically create these charts with arbitrary data, as if from a survey.

The thesis is organized as follows. Chapter 2 begins with exploration of classical data visualization
techniques and adds multi-dimensionality, geospatial (areal) orientation, and combining these into
one picture. Chapter 3 discusses the design of the techniques used to produce the graphical displays
as well as the design of the experiments given to the participants. Chapter 4 analyzes the results of
the surveys and deduces relevancy and effectiveness of each technique. Lastly, Chapter 5 lists the

conclusions and potential future work for this topic.
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CHAPTER 2:

Background and Literature Review

We begin with a review of classical data visualization, incorporating multi-dimensionality and
geospatial (areal) techniques. From these sections, we provide a foundation of data-oriented graph-

ical design for consideration in the techniques used for the experiment.

2.1 Classical Data Visualization

Data visualization, as a portion of exploratory data analysis (EDA) (Tukey 1977), focuses on
graphical display of data for simplicity without formality or even complexity. The National In-
stitute of Standards and Technology (NIST) describes EDA as employing mostly graphical tech-

niques to:

e maximize insight into a data set;

e uncover underlying structure;

e extract important variables;

e detect outliers and anomalies;

e test underlying assumptions;

e develop parsimonious models; and

e determine optimal factor settings

(National Institute of Standards and Technology 2012). Admittedly, the purpose of presenta-
tions to decision makers and viewers is not exploratory; the intent of the briefing is to highlight
interesting portions of deductions or inferences. As such, and keeping in mind that the target of
these briefings is often somebody not formally trained in the calculus of statistics and data analysis,
NIST’s presumption on useful techniques that “are graphical in nature with a few quantitative tech-
niques” may display too much information, taking the non-analyst into a realm requiring cognitive

processing and studying to interpret the data, therefore requiring more time.

Classical approaches to visualization, without geospatial ties, include bar plots, histograms, box
plots, and scatterplots. These techniques provide a rich perspective on data analysis, but most of
them require the user to cognitively explore each pair of variables. Cleveland discusses the prolific
histogram, expanding its use via faceting (otherwise known as panels, lattice or trellis plots) but

warns that “the histogram is a poor method for comparing groups of univariate measurements”



(Cleveland 1993, p. 8).

More information on classical data visualization has been described in numerous publications and

is summarized by, for example, Fricker et al. (In press).

2.2 Multi-Dimensional Displays

Adding dimensionality to charts can utilize numerous techniques, not all of them geospatial or
perhaps even intuitive. In bar plots, for instance, multiple variables can be shown next to each
other or stacked as shown on the right side of Figure 2.1. The left side of the figure shows Yau’s
demonstration of Nightingale charts (Yau 2011), showing six variables on top of the categorical
location. Each nominal (not geospatially-represented) location depicts six dimensions of data, the
six categories of crime. In this case, location is inferred by the name of each state referenced,
though effort must be expended to mentally combine the states into a comparable map. Note that
he represents each of the six factors (e.g., robbery and murder) by both location in the pie chart as
well as the color. In general, Tufte (1990 2001) discourages the display of more dimensions than
the number of variables available. Yau’s plot uses placement on the pie chart (i.e., which wedge) to
indicate the crime category and reinforces this with colors, thereby using two dimensions, wedge
and color, to indicate the same data variable, crime category. In this case, the combined use
attempts to facilitate visual differentiation when viewing each state individually, and the picture is
not implying increased relevance with exaggerated dimensionality. Geographically, visualization
of this data provides ready access to each U.S. state but does not provide simple comparison or
correlation by location or crime. For both charts, Yau suggests better use of white-space and
explanatory text to better prepare the readers for the upcoming data: “they most likely didn’t look
at the data, so they might not see the same thing that you see if there’s no explanation or setup” (Yau
2011, p. 330). The data itself is presented intuitively and logically, but the geospatial relationship

is not easily compared.

Wickham (2009) provides an extensive package of graphing functions for the R programming
language, called ggplot2, that provides a large number of tools for data visualization. The library
simplifies representation of multiple dimensions possible by use of color (including alpha channel
or transparency), size, or different panels of a plot, also referred to as facets. Figure 2.2 shows an
example facet plot using an included instructional dataset diamonds displaying four dimensions:
size, price, cut, and density. (The term facet referring to panels within a plot is not to be confused
with the facets of a diamond, though perhaps the two are related.) Relatively rich dimensionality

is presented here. Unfortunately, paneling the different perspectives of the data is not overlaying
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Figure 2.1: Subset of Yau’s Nightingale charts showing crime in some of the United States (left).
The same data is presented in stacked bar plots (right). The top-right stacked barplot does have a
green bar on the left extreme, though it may not be easily discernible. (Left chart from Yau (2011,
figure 7-18). The original figure included all 50 states. Viewing in color is required to differentiate
several of the colors, though the horizontal stacked barplots use the same order of variables as the
pie chart, starting with robbery and proceeding clockwise.)

two or more variables onto the same map.

Tufte states that “the time-series plot is the most frequently used form of graphical design” (Tufte
2001, p. 28), using time as the paneled variable as shown in Figure 2.3. Using limb position in the
x and y axes relative to each animal, animal movement relative to the background (same axes), and
time in each panel, he shows five dimensions. In order to perceive, for example, the position of the
limbs on the gecko, the observer is required to examine each gecko individually, a cognitive and
iterative process. Tufte asserts that these displays are usually at their best visualizing large datasets
with “real variability” (Tufte 2001, p. 30).

When showing multi-dimensionality in data, Tufte (2001) warns against over-representing the
magnitude of data when using area or volume to display a variable, such as in the use of bub-
bles or circles. By varying the radius proportionately to a variable, the perceived variable—the
circle’s volume—exaggerates the variability of the data. He proposes a metric called the lie factor
which is the ratio of the size of the effect shown in the graphic and the size of the effect in the
data. He suggests values of between 0.95 and 1.05 are acceptable, whereas anything outside of

that show “‘substantial distortion, far beyond minor inaccuracies in plotting” (Tufte 2001, p. 57).
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Figure 2.2: Wickham’s ggplot2 library demonstrating four dimensions of data in a panel plot.
The four dimensions shown are the size (carat) and price on the x and y axes, the quality of the
diamonds on the different panels, and the number of diamonds per data point (density) is depicted
using color. (From Wickham (2013), density exaggerated to provide more contrast of color. Addi-

tionally, the differentiation by color is more apparent when viewed in color.)

Figure 2.3: Time-series plot of the “advance of the gecko” and the “undulations of the dorsal
fin of a descending sea horse” (Tufte 2001, p. 36), showing qualitative rather than quantitative
information. These use paneling as a form of multi-dimensionality.

In one format, Rosling (2013) displays multiple variables via bubbles on a scatterplot. In addition
to the variables represented on the two axes, the size of the bubble represents a third variable and
(optionally) bubble color represents a fourth. His software, Gapminder World, provides over 500
datasets for comparison; an example output is provided in Figure 2.4. This chart does show the
data with a spatial reference by coding the colors based on the color of the countries, shown in the
inset world map. The observer can readily see relationships between countries; for example, the
dark blue bubbles representing much of Africa are predominately in the lower-left of the cluster
of bubbles and there do not appear to be any large blue bubbles, in comparison to the very large
light blue (India) and red (extending from southeast Asia to Australia). This method is similar to
paneling, however, in that to properly compare countries, the observer must either know the colors
beforehand or frequently refer to the inset map. Additionally, this method suffers when comparing

more than a handful of distinct countries.

Perhaps one of the most elegant portrayals of multi-dimensional data is Charles Minard’s flow map
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Figure 2.4: Rosling’s Gapminder World software provides easily-interpretable displays of up to
four variables, with a fifth presented in a time-series animation. Dimensions are provided by the
two axes plus the bubble size and color. Data is current as of April 20, 2013. From one screen
of the Gapminder World application (Rosling 2013). (This chart requires color to differentiate
between the regions.)

of Napoleon’s March to Moscow, Figure 2.5. Tufte (2001, p. 40) credits this graph as displaying
six variables: ‘“the size of the army, its location on a two-dimensional surface, direction of the
army’s movement, and temperature on various dates during the retreat from Moscow. ... It may
well be the best statistical graphic ever drawn.” This display succeeds in showing multiple dimen-
sions while translating spatially. Instead of showing different variables for various spatial regions,
though, this depicts only two variables through time: the force strength of Napoleon’s army, and
the temperatures to which they exposed as they move towards Moscow. The goal of this research

is to expand this for multiple regions simultaneously.
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Figure 2.5: Classic graphic from Charles Minard (1781-1870) showing Napoleon’s army and
its progress in its assault on Moscow. This chart is both geospatial and a time-series, displaying
six dimensions in the form of position and direction of movement, time-series as dates printed
at various points, troop strength shown both numerically and as a function of line width, and
temperature included on the bottom portion.

2.3 Geospatial Displays

Rosling’s data can also be displayed geographically, as in Figure 2.6 where the two axis variables
from Figure 2.4 (life expectancy and income per person) are exchanged for country centroid lati-
tude and longitude, while the bubble size and color retain their original meanings. When compared
to Figure 2.4, this facilitates spatial comparisons by overlaying data points on the map. In so doing,
however, fewer data can be shown, as we no longer show the two axis variables from the chart,
income per person and life expectancy. In this case, we are now showing a single variable, fotal
population, by the size of the bubble. This also goes against Tufte’s recommendation against dis-
playing a variable with more than one dimension, as it uses both geographical placement of the
bubbles to indicate country as well as the color to indicate which region of the world (though that
helps bridge the commonality between this map and the previous non-spatial chart). Additionally,
it would be easy to infer relevance of the bubble’s location within a country vice understanding
that, by being placed at the country’s centroid, the bubble represents a datum for the country as a

whole.

Yau focuses more on aesthetic presentation and design, commenting that for areal data, “Choro-
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Figure 2.6: The two axis variables from Figure 2.4 are exchanged for country centroid latitude and
longitude. The bubble size and color retain their relevance. Data is current as of April 20, 2013.
From Gapminder World software display (Rosling 2013). (As this chart uses the same color
coding as Figure 2.4, this also benefits from color to differentiate; however, because the colors are
redundant with the geographic regions, this chart is still useful in grayscale.)

pleth maps are the most common way to map regional data” (Yau 2011, p. 286). In a manner
similar to Rosling’s map, Yau’s display in Figure 2.7 (left chart) uses bubbles indicating Walmart
store locations. The bubble size is misleading as it does not reflect the amount of stores or the size
of any store: because the image in Yau’s book is a snapshot of a multi-decade time-lapse anima-
tion, new stores are represented by a “blooming” bubble which quickly resorts to and remains at
the fixed small size, regardless of store size or density of stores in the area. Regardless of the size,
in contrast to displaying survey data, the bubbles’ exact location is relevant, indicating Walmart
store locations. Yau’s choropleth (Figure 2.7, right chart) displays unemployment and is more
relevant for regionally-defined data such as surveys.

13



The left method is point-specific and not applicable to surveys’ regional information. The right
method clearly shows regions (counties) with boundaries and shades reflecting their respective
unemployment rates, though this now only shows one extra variable per region. This right chart
falls victim to the original problem this paper suggests to remedy: only showing the mean response
for a region and not the margin of error associated with it. If these results were based solely on a
survey of a few dozen people per county, that would certainly reduce the precision of the data and

the usefulness of the chart.

Wickham’s ggplot2() can be extended with the geom_polygon() function that accesses map
data. Combining this with the remaining paneling, binning, and other display techniques in the
library allows geospatial statistics plotting, as shown in Figure 2.8. This chart is clear to understand
but requires cognitive interpretation of each individual histogram in order to understand each data

point by itself and in comparison with its neighbors.

Recent efforts by Livingston and Decker (2011 2012) continue with the theme of shapes and colors
to expand the multidimensionality, intending to achieve up to ten variables. Figure 2.9 displays
five of their techniques. These techniques are intended to enhance an analyst’s ability during EDA.
The techniques are intended to depict point-based data, in contrast to regional data as typically
presented in survey responses. The techniques can be generalized to deal with non-point-specific
regional data, though some of the techniques might imply point relevance. Livingston et al. (2011
2012 2013) continue this work by using more complex shapes, overlaid layers of techniques, and
combine different techniques on the same plot for increased dimensionality. Two such examples

are shown in Figure 2.10.

These techniques are certainly advanced and can provide an analyst with valuable pattern recog-
nition and visual correlation between areas. As with an autostereogram where the image conveys
depth perception to observers employing various focus techniques, Livingston’s techniques require
study and concentration on the chart as a whole in order to find a pattern within. For comparison,
a classic autostereogram is provided in Figure 2.11. Though no studies were found that include an
autostereogram for data analysis and/or presentation, it often requires significant time to study and

anecdotally not everybody is able to see the embedded image.
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Figure 2.7: Point-based bubbles (left) display the the locations of Walmart stores at some point
in the stores’ history. The size of the bubble is only used to highlight, at a snapshot in time,

the appearance of new stores at those locations. Choropleth map showing unemployment (right).
(From Yau (2011, figures 3-25 and 3-26)).
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Figure 2.8: Utilizing the ggplot2, ggsubplot, and maps libraries of the R programming lan-
guage, StackOverflow user JT8S5 created this as an example of mapping capabilities. Though the
histograms are identical and provided solely for demonstration, if they were different then the
reader would be required to “study” each histogram individually before being able to make any
comparison between regions. (From StackOverflow user JT85 (2013).)
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Figure 2.9: Multivariate visualization techniques evaluated in experiments by Livingston and
Decker. From left to right: brush strokes, data driven spots, oriented slivers, color blending, and
attribute blocks. Source: Livingston and Decker (2012). (These displays heavily rely on color.)
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Figure 2.10: A data-driven spots technique (left) derived by combining five spot patterns, specifi-
cally configured to preclude obscuration. An abstract technique using stick figures (right) employs
limbs angled with respect to the body, providing multiple data layers. This is a portion of the com-
posite blending on the left, cropped and expanded because otherwise the stick figures would be
“too small to be readable.” (Extracted from Livingston et al. (2011). The left display relies heavily
on color.)
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Figure 2.11: This random dot autostereogram (left) encodes a 3D scene of a shark (right)
swimming before a background. This technique conveys depth perception in a 2D im-
age. (From Hsu (2005), used under a Creative Commons Attribution-ShareAlike license,
http://creativecommons.org/licenses/by-sa/3.0/deed.en.) Though the autostereogram
on the left can still be viewed without color, depth perception might be easier to achieve with the
color contrast provided by the background.)
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CHAPTER 3:
Building the Experiment

As a reminder, the purpose of this thesis is to determine techniques that provide easy and effective
interpretation by non-analysts. In order to accomplish this, we first created a collection of visu-
alization techniques for the added dimension. We employed these new techniques in survey plots
and led a pilot study and an experiment to quantitatively measure the ease and effectiveness with

which the participants were able to interpret the plots.

This chapter describes the decisions in building the visualization techniques and the design of the
experiment. The creation of techniques followed guidance provided by graphic designers in collab-
oration with graphic designers in the Center for Educational Design, Development, and Distribu-
tion (CED3). These initial techniques were then implemented in the R programming language and
presented to pilot groups to filter out those that performed poorly. The techniques that remained
after this pilot group were included in a computer-based experiment for testing. The results from

that experiment will be discussed in Chapter 4.

3.1 Creation of Techniques
The first step in testing visualization is the creation of different techniques to identify those that

perform comparatively better than the others. Display variables that follow the elementary percep-
tual tasks of Cleveland (1994) Cleveland and McGill (1984):

length

direction or angle

volume or area

curvature

shading, color saturation, or density

Working with the CED3, we developed display techniques that harness these characteristics. In
all but one technique, we limited each technique to varying one characteristic only, both due to
Tufte’s warning against displaying more dimensions than available variables and so as to minimize
the number of levels and factors for the design of experiments. Ten of the twelve techniques are

shown in Figure 3.1.
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Figure 3.1: A colormap (choropleth) plus ten of the twelve techniques resulting from collaboration
with the CED3. The techniques are: (a) choropleth, used solely in this experiment to represent
the response to a survey question; (b) green pole; (c) vertical line; (not shown) a partial vertical
line; (d) angled line; (e) angled and variable-width line; (not shown) a vertically-limited, angled,
and variable-width line; (f) hexes; (g) circle spacing; (h) circle density; (i) diamonds contrast; (j)
dots contrast; and (k) random dot contrast. (The last three techniques might not show well if not in
color.)

The response variable was held constant through all tests, using the same technique—variable
color shading—and the same colors for all tests. We kept it constant for two reasons: first, the
response variable, in our case a survey question response, is likely the initial value of interest
viewers look for in a chart, and since color shading is anecdotally the most common technique
used for displaying survey response data, this variable will likely be the first the viewer actually
“sees” (subject to interference from the secondary display technique). The second reason was to

limit the number of factors and therefore the complexity of the experimental design.

The first technique for margin of error displayed, (b) the green pole, uses the length characteristic,
aided by periodic black tick marks. This technique is the only one that does not fit well into a
five-bin legend, as shown in the remaining techniques in Figure 3.1. There are two possible biases

when using the green pole:

1. Inferred point relevance. If the poles are centered within the region or for some reason offset,
the viewer could assume that the location is relevant to the data, when in fact the survey data
is likely limited areally.

2. Masking of neighboring regions. Though unlikely, if one region has a particularly tall pole (a
high margin of error) and a region to its north is both small and has a center point shrouded

by this pole, then the northern region’s pole might be partially or completely obscured.
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The second technique, (c) vertical line, varies the width of a line spanning from the northern border
to the southern of the region. If the margin of error is effectively zero then the bar is not visible,
whereas the wider bar represents significant error. A variant of this, not shown in the figure, limits
the vertical span of the line such that no region’s line is any longer than any of the other regions in
that chart. One possible bias for this technique is the inference of relevance of the line’s length, as

countered in the alternate form.

The angled line, (d), varies just the direction or angle of the line in relation to the variable. For ex-
ample, a country with effectively zero margin of error would show a horizontal line and the higher
margins of error might be limited to an elevation of 45° to 90°. In this example, the secondary vari-
able, margin of error, is non-negative and will likely span from 0% to a relatively low percentage.
Other examples might include variables where positive and negative values are permitted such as
the relative comparison of two variables or one variable over two time period. In these examples,

this angled line might have a positive or negative angle relative to the horizontal.

The angled and widened line, (e), extends (d) slightly by representing the variable both in the angle
and in the line width. This violates Tufte’s assertion that a chart should not have more dimensions
than variables, but provides another discriminant between two similarly-angled lines. A variant of
this technique, not shown in the figure, limits the vertical span of the line such that no region’s line
is any longer than any of the other regions in that chart, similar to the limitation on the variant for

(c) vertical line.

The next two techniques, (f) hexes and (g) circles, are effectively the same, utilizing shape radius
for the variable. An initial version of the hexes form varied the area. During early field testing,
however, participants favored the display when the shape’s size was varied by radius instead of
area. This presents a bias by exaggerating the relative importance of the displayed variable, some-
thing that might be detected in the final experiment. Technique (h), circle spacing, keeps the size of
the shape constant and varies the distance between them per the variable. This, too, was preferred

in field testing despite the potential for bias.

The next three techniques, (i) through (k), utilize color contrast to show the possible high and
low values for the given variable. The background is still based on the primary variable, so the
examples depict a response of 50%. In a region with no contrast, the shapes effectively show the
same color as the response, thereby rendering themselves invisible. The higher the margin of error,
the more the contrast. The first and second, (i) and (j), use regularly-spaced diamonds and circles,

respectively. The third, (k), randomly places dots using the two colors. There is the potential for
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bias with all three of inferred point relevance; we attempt to mitigate this risk by using evenly-
spaced shapes in (i) and (j) attempting to appear “too regular”, and small-enough dots in (k) that

they appear more as noise than as relevant points in the region.

3.2 Map Layout

For the purposes of the experiment, the layout of the plot is standardized. The response variable is
always shown using the purple single-color shading. The legend is in the upper-left with five bins to
indicate the variable’s value (except in the case of the green pole). For all surveys, the geographic
area portrayed is the northwest portion of Africa, consisting of Libya, Chad, Cameroon, and all
mainland countries to the west. Only country-level survey data is generated and provided to the

participants.

The goal of the experiment is to provide the user with a relatively complex map that will allow us
to identify the relative ease with which a participant can recognize specific parameter extremes.
As such, because of the scale of the continent, several countries were too small and would have not
displayed (accurately or at all) some of the techniques. The following country pairs were combined

into one shape each: Guinea and Guinea-Bissau, Seirra Leone and Liberia, and Togo and Benin.

After implementing these techniques in the R programming language, the next step was to present
them to small pilot groups, with the intention of reducing the number of techniques to include in

the experiment.

3.3 Pilot Study

Thirteen people were chosen to participate in the pilot study of these twelve techniques. The
purpose of the pilot study was to not only reduce the number of techniques to a more manageable
number (six techniques), but also to investigate possible question mechanisms for the experiment
to ensure clear understanding of intent. These participants were all military officers with a variety

of service and specialty backgrounds.

Each participant was given a packet that included twelve maps, showing each of the techniques.
The data used to create the display was randomly generated but held constant for each participant;
that is, a participant saw the same data displayed twelve different ways. Each participant within a

pilot group was given a different data set.

The participants were asked to rank or score the techniques individually on a scale of at least 1

to 3, ties permitted. In other words, the participants were permitted to use any scale to compare
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the techniques, as long as there were at least three levels. Responses from the participants in the
pilot groups varied from 1-3 and 1-5 to a true 12-level ranking. The intent was to identify those
techniques that performed particularly well and those that performed particularly poorly. The
responses were then normalized on a scale from O to 1 and analyzed. The results are listed in Table
3.1.

Table 3.1: Normalized results of the pilot study. “Best” and “worst” columns list how many par-
ticipants described that technique as being their most or least favorite, respectively. The means are
generally not insightful here, possibly due to the small number of participants. The “experiment”
column indicates which techniques were retained after the pilot study and used in the experiment.

Technique Mean Std Dev \ Best Worst | Experiment
(b) Green pole 0.41 0.23 5 1 Y
(c) Vertical line 0.81 0.27 1 7 Y
(c) Vertical line, limited 0.77 0.27 0 6

(d) Angled line 0.88 0.26 1 9

(e) Angled/ Widened line 0.81 0.31 1 7

(e) Angled/ Widened line, limited 0.77 0.30 1 6

(f) Hexes 0.56 0.30 1 2 Y
(g) Circles 0.49 0.31 2 2

(h) Circle spacing 0.54 0.29 2 2 Y
(i) Diamond contrast 0.52 0.30 4 1 Y
(j) Circle contrast 0.57 0.28 0 1 Y
(k) Dots contrast 0.65 0.31 2 2

The basic statistics, mean and standard deviation, provided little benefit in finding the poor per-
forming techniques. However, despite the arbitrary ranking provided by the participants, an in-
sightful statistic is the number of people in the pilot study who marked a particular technique their
most or least favorite. This is the discriminant we will use to limit the number of techniques for
the experiment. The five worst performers are both variants of (c) vertical line, (d) angled line, and

both variants of (e) angled and widened line, leaving seven techniques.

In keeping with the original list of chart characteristics from Cleveland in Section 3.1, however,
we opted to keep technique (c), vertical lines. Two of the contrast techniques, (f) hexes and (g)
circles, are similar enough that we removed the circles. Similarly, we removed (k) random contrast
dots which appears similar to (j) circle contrast. The surviving techniques are indicated in the

Experiment column in Table 3.1.
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3.4 Experiment Design

Two of the goals set forth in this thesis are to provide for easy and effective communication of data.
For ease of understanding, we will use time as a proxy indicator. That is, given a map with the
survey data overlaid, we measure how long it takes a participant to find the region with the desired
trait. To measure the accuracy or effectiveness of a technique, we ask the participant to estimate

the numerical value of a response or a margin of error.

3.4.1 Experiment Instrument

For rapid development and layout control, hypertext markup language (HTML) and cascading
style sheets (CSS) are used with JavaScript code based on the jQuery library. The JavaScript code
provides rudimentary information such as milliseconds between clicks and click coordinates on
an image; all processing dealing with error rates and in which country the participant clicked are

performed in R, outside of the experiment environment.

The first half of the test asks the participants to look for the largest or smallest value in either the
response or the margin of error variable. For each question, they are shown the legend displaying
the specific technique, and they are told which of the four possibilities they are being asked. This
was intended to allow them to calibrate their eyes and to mitigate confusion when switching rapidly
between techniques and variables. Once they have acclimated to the conditions of each question,
they click on a button which begins the timer (invisibly) and populates the data on the remainder
of the map. The timer for that question stops when they click on a country. To preclude ambiguity
due to clicking on a border between two countries, they are advised to bias their click towards the

middle of the intended country.

The second half of the test asks the participants to estimate the value of the response or the margin
of error for a given country. It does this first by displaying the legend and desired variable, as well
as the outline of the country to be estimated. When they are ready, the map is populated with the
data and the timer again starts. It stops for that question after they have typed in a number and hit

enter.

For both halves, each technique is accompanied by a brief textual description. Before the timing
starts for any one question, if they are uncertain then they can either ask the proctor of the experi-
ment or read the text. At no time during the test is there feedback on which country they clicked
or the accuracy of their selection or estimation. At no time are they permitted to return to previous

questions.
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3.4.2 Factors and Randomization

Because the display technique for the response variable is held constant, as is the location and
layout of the map components, we limited the possible factors to maximize significance in post-
test analysis. We created 20 collections of random survey data; the response variable is generated

from Unif(0, 1), and the margin of error is generated from Unif(0, }1) The factors varied were:

Alternate variable technique (6 levels);

Which variable (response or margin of error);

Which extreme (largest or smallest, first half only);

Which country (18 levels, second half only); and

Which survey data to use (20 levels).

The first eight participants were given 36 tests in the first half (six per technique) and 24 tests in the
second half (four per technique). To test for a learning curve, these first eight were given all tests
for a particular technique consecutively (in each half of the experiment). Within each technique,
whether the participant was asked for the response or error, the largest or smallest, and which

survey data to use, was determined randomly at runtime.

For the remaining participants, the test sequence was generated from a nearly-orthogonal Latin
hypercube (NOLH) in order to minimize correlation among test columns. A NOLH does not
ensure true orthogonality nor minimal correlation, but it does minimize it well. NOLHs of seven
factors or less only require 17 experiments (rows within an experiment matrix). We opt for the
next-larger NOLH matrix with 33 experiments in order to include all 18 countries on the map. For
the first half of the experiment, we are able to reduce the maximum correlation to 6.1%; the second

half is reduced to a maximum correlation of 8.1%.

This NOLH design of experiments determines which levels are to be used for each question. Since
the number of questions per technique were not evenly distributed, when the experiment started
the techniques were randomly ordered such that, from the NOLH table, technique 1, for example,
did not always refer to the green pole technique. We also randomized the pairs of “response versus

margin of error” variable selection and the “largest versus smallest” variable selection.

3.4.3 Participant Instruction
For the first half of the experiment, the first slide collected non-personally-identifiable demograph-
ics. The following few slides provided a basic introduction to the map, to the concept of the

statistical margin of error, and an example of how they would proceed with the first half. Before
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starting the estimation half, they were again provided two slides giving example execution.
3.5 The Experiment

Sample pages from the training and testing portions of both halves of the experiment are shown in

Figures 3.2 and 3.3.
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Instructions: Interpretation of All Countries

1f we ask for: BEGIN 70

Response Margin of Error.

LARGEST RESPONSE (darkest color), click on Senegal
(left-most of the three highlighted countries) with a
response of 87%.

SMALLEST RESPONSE (lightest color), click on Burkina
Faso (middle), 20% response.

LARGEST ERROR (largest hexes), click on Burkina Faso
(middle), 24% margin of error.

SMALLEST ERROR (smallest hexes), click on Cameroon
(right-most), 0.4% margin of error.

The data and therefore the image will change for each question.
You will first be given the legend for study (time for legend
study is not recorded). Once you press the "READY to find ..."
button, you will be shown the data and your time to find the
appropriate country will start.

If you have questions, please ask them of the proctor now. When
you are ready to begin the test, click BEGIN.

Variable-Height Pole
A bar where its height represents the error. The dark ticks ‘ Click the country with the SMALLEST ERROR 1%
indicate 5% intervals.
Response Margin of Error
* LARGER ERROR: taller bars 100%
» SMALLER ERROR: short bars. 75%

50%) 25%
25%
0% 0%

SMALLEST

Figure 3.2: Sample pages of the training (top), and testing (bottom) portions of the first half of the
experiment. (The percentage in the upper-right corner represents progress through the test.)
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Instructions: Estimation of Values

You will now be asked to estimate the value of either the
RESPONSE or the ERROR for a given country. The specific
country will be highlighted with a thicker outline. You will be
timed for this portion as well, so the sequence of clicking
"READY to estimate the ..." and entering a value are the same.

Using the same example as in the first module, the country
highlighted to the right (Niger) has a 19% level of support, and a
13% margin of error.

Enter "19" into the text box above the image and hit enter.

Estimate the RESPONSE H

53 %

Response Margin of Error

Variable-Height Pole

A bar where its height represents the error. The dark ticks
indicate 5% intervals.

* LARGER ERROR: taller bars
» SMALLER ERROR: short bars.

‘ Estimate the ERROR I ‘

58%

Response Margin of Error

100%
75%
50%| 24%
25%
0%

&N
L

Figure 3.3: Sample pages of the training (top) and testing (bottom) portions of the second half of

the experiment.
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CHAPTER 4

Experiment Analysis

This data analysis involves multiple steps, with the goal of being able to distinguish performance
of each individual technique. Several of the covariates, described in Section 4.1.2, have their own
variability which can easily be blocked using mixed-effects models. Since the participant can
remember from question to question and therefore learn and improve his or her performance, we
do not have independence among observations; they are likely tied together in a learning curve,
measured in a turn-based variable that records the sequence of questions. One challenge of the

data analysis is to recognize the presence of and counter the effects of this possible learning curve.

Because this thesis uses similar terminology for the experiment as for the data used to generate the

experiment, we will use the following font convention:

variable: bold, indicating the variables used in the randomly-generated survey data used to gen-
erate each plot. For example, response and margin of error. All of the variables are defined
in Section 4.1.2.

variable: fixed-width, indicating the variables used in this experiment. For example, id, time,
and correct.area.

VARIABLE: smallcaps, indicates the dataset being referenced. Specifically, LOCATION and ESTI-
MATION.

The intent of the study is to find effective techniques, not necessarily perfect ones. Nor is the intent
of the study to be able to predict the time required or error rate of readers of a specific technique.
As such, and in keeping with the intended goal of developing a technique that facilitates easy and
effective interpretation of the plot, we suggest that measuring the continuous variables of time and
error are not as beneficial as simplifying the results to “fast and accurate enough” or not. More
to the point, if the participant is “fast and inaccurate” or “slow” regardless of accuracy, the plot
technique is ineffective in making an easy and effective communication mechanism. We quantify

this binary response variable in Section 4.1.1.

To do all of this, we recognize that the challenge is to isolate the variability due to the factors
in the model. For most of them, this will be handled in the final steps. However, to account for
the possible learning curve, we need to characterize the time-sensitive variability before we can

determine how to block it. To do that, we will first examine the measured response variables of
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time and error using simple linear regression, followed by a logistic regression on the binary re-
sponse variable. When we find the best-fitting transformation of the time-sequence in seq, we will
compare its performance with a generalized additive model, specifically the smoothing function,
and carry the best transformation to the last step: generalized linear mixed-effects model. In this
final step, we will block for the mixed-effects and time-sequencing of seq, intending to reduce the
background variability sufficiently to derive statistically-significant conclusions about the variance

for individual techniques.

4.1 Data Description

The experiment resulted in two datasets: we call the first half the LOCATION test, where partici-
pants selected a region with the highest or lowest response (or margin of error); and we call the
second half the ESTIMATION test, where they estimated the response or margin for a given coun-

try. The two datasets are not necessarily independent, but the analyses will be handled separately.

The LOCATION dataset consists of 957 observations. The first 11 participants had 36 questions,
while the remaining 17 participants had the NOLH-derived 33 questions. The relevant data for
each observation includes the time to respond in seconds, the country selected, and the error.

(Definitions of the variables are in the next section.)

The ESTIMATION dataset consists of 825 observations. The first 11 participants had 24 questions in
which they estimated one country each, and the remaining 17 participants had the NOLH-derived
33 questions. Each observation includes the time to respond, the country, and the participant’s

numerical estimate.

The response was conveyed as a choropleth, a well understood technique with which most par-
ticipants were likely very familiar. Reading the response while potentially obscured by various
secondary techniques is likely to be a different mental process than interpreting the secondary
technique itself. As such, in addition to breaking the data into portions by the test, we also subset
it by the variable (response and margin) he or she was instructed to interpret. For analysis of the
linear regression models, we subset the data one layer further by evaluating the time to respond
separately from the participant’s error, as the two are not independent nor necessarily functionally
correlated.

Seventy-three percent of the observations in the first half and 61% in the second half are considered
good by the metric of “fast and accurate”. Because we are evaluating the six techniques, a simple
comparison of their performance is shown in Table 4.1. Though it is hasty to draw conclusions
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from this information, two things stand out: no technique appears to dominate the others, and
there may need to be a balance between time and accuracy. Figures 4.1 and 4.2 provide some
comparable 95% confidence intervals for time and error (assuming independence), grouped per

dataset and per technique.

Table 4.1: Percentage by variable and type of plot of correct selections or estimations for each half
of the test.

Test Variable circspacing diamonds dots hexes onebar pole

Location Response 80.2% 84.6% 76.2% 77.8% 83.1% 77.6%
Margin 67.6% 44.0% 487% 76.5% 72.4% 82.9%

Estimation Response 47.1% 64.1% 50.0% 392% 569% 47.4%
Margin 73.8% 66.7% 64.6% 79.7% 80.3% 68.4%

95% Confidence Intervals for Mean of Time
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Figure 4.1: 95% confidence interval for the mean of all observations of time.

4.1.1 The Response Variables
Time is measured for each question, and begins when the data is presented and stops when the

participant either clicks on a country or enters an estimate. The values range from 1.06 up to 96.10
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95% Confidence Intervals for Mean of Error
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Figure 4.2: 95% confidence interval for the mean of all observations of error.

seconds, though the 80" percentile is approximately 10 seconds. A density curve showing the
lower 90% is shown in Figure 4.3, and the remaining 10% of the observations are in a decreasing

right tail.

Error for the LOCATION test is calculated using the square of the difference between the value
of the country the participant clicked on and the value of the actual “best” country. Over 50% of
these observations measured 0, indicating a correct selection. The 85" percentile corresponds to
an error of 1%, meaning only 15% of the observations were incorrect by more than 10%. (As an
example, if the response of the correct country is 95% and the participant clicked on a country
with a value of 83%, then the difference is 12%, and the error is 0.122 = 0.0144 or a 1.44% error.)
For the ESTIMATION test, error is the square of the difference between the participant’s estimate
(divided by 100) and the actual value of the identified country. A 1% error corresponds to the
79'" percentile, meaning that the estimate provided in the remaining 21% of the observations were
at least 10 percentage points incorrect. (As an example, if the correct response of the indicated

country is 63% and the participant estimates a value of 50%, the difference is 13%, with an error
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of 0.13% = 0.0169, or 1.69%.) The error density curves in Figure 4.3 show the lower 90% of the

observations, and the remaining 10% of the observations are in a decreasing right tail.

Time Error
—— Location
- = Estimation
Cutoff
| | | |
0 2 4 6 8 10 12 14 0 1 2 3

Seconds Percent

Figure 4.3: Density curves for time (left) and error (right) for the experiment. These data include
at least 90% of the observations for both variables; the remaining 10%, not shown, are in decreasing
right tails.

4.1.2 Covariates

The covariates in the experiment were:

id (categorical, 28 levels)
Each participant in the experiment was assigned a unique id.

svy (categorical, 20 levels)
To ensure that participants did not see the same data for all questions, 20 surveys were
randomly generated. For each country used in the test, a survey response is generated from
Unif(0, 1) and a margin of error is generated from Unif(0,0.25). All observations within the
fake survey are independent.

seq (ordinal € [1,36])
Per-participant counter for the sequences of tests. The first 11 participants received, for
example, 36 questions in the LOCATION tests. Participants 12 and beyond only received 33
questions in the first half, so their seq will range from 1 to 33. Similarly, in the ESTIMATION
test, the first 11 participants received 24 questions, so their seq will range from 1-24.

tech (categorical, 6 levels)
Indicates which technique was presented on a question. Available techniques are: circspac-
ing, diamonds, dots, hexes, onebar, and pole, as shown in Figure 3.1.
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var (binary)
Indicates whether the participant is told to identify the response (0) or its margin of error (1).

minmax (binary, LOCATION only)
Indicates whether the participant is told to find the smallest (0) or the largest (1) of whichever
variable for which he or she is looking.

click.response (continuous € [0, 1], LOCATION only)
The response of the country selected.

click.margin (continuous € [0,0.25], LOCATION only)
The margin of error of the country selected.

click.area (continuous, LOCATION only)
The area of the country selected, in square meters.

correct.response (continuous € [0, 1])
The correct response for the intended country, whether it be a different country (first half of
the test) or the actual response for the requested country (second half). (The word “intended”
means something different for each half of the test. In the LOCATION half, it means the
country the participant should have clicked on, so it would have the highest or lowest value
in the variable that was indicated in the question. In the ESTIMATION half, it means the
country that was highlighted for the participant to estimate.)

correct.margin (continuous € [0,0.25])
The correct margin of error for the intended country.

correct.area (continuous)
The area of the correct country. For the second half of the test, this is the same as click.area.

time (continuous)
Measured time, in seconds, between when the data is presented to the participant and a
country is selected (first half) or an estimate is entered (in ESTIMATION).

estimate (integer € [0, 100], ESTIMATION only)
The value the participant entered as their approximation of the response or margin in a
survey plot.

error (continuous € [0, 1])
The squared difference between the value of the clicked country and the correct country
(based on var and minmax) for the first half, or between the participant’s estimate and the
actual value (based on var) for the second half of the test. Because the margin of error for
each survey is on a scale a quarter the size of the response variable, the error is scaled by 16

to keep the scales the same.
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RV2 (binary)
The binary response variable. A value of 1 indicates the participant’s response was deemed
“fast and accurate.” All other responses, whether “fast and wrong” and “slow,” regardless of

accuracy, have a value of 0.

4.1.3 Data Cleaning

From the original dataset, there are 31 observations that we consider mistakes and adjust accord-
ingly. Two observations from the first half of the test include mouse clicks that are not inside any
of the countries. On visual observation, they are very near to a country that is easily seen as the
smallest margin (observations #360) and smallest response (observation #881), so the clicks are

adjusted to reflect them.

Of the remaining 29 observations, two of them it appear to have found the correct extreme (i.e.,
largest or smallest) but not the correct variable (i.e., response or margin). For example, if the
participant is asked to locate the country with the largest margin and instead clicks on the country
with one of the largest responses, the data is corrected. The criterion to discriminate a mistake from
misinterpretation of the technique is a difference of greater than 0.71 for the response and 0.177 for
the margin. Based on observation and post-experiment discussion with the participants, they often
questioned whether they had evaluated the correct variable (or extreme) on the previous question.
From this we suggest without mathematical proof it is a relatively likely mistake, therefore a cutoff
error 50%. This equates to V0.5 ~ 0.71 for response questions and V0.5 /4~ 0.177 for margin

questions.

As an example, the participant was instructed to locate a country with the smallest margin and
he or she clicked on a country with a margin of error of 0.20 out of 0.25. The country with the
smallest margin had a value of 0.01, so the difference is |0.20 — 0.01| = 0.19 > 0.175. Since that
country had the smallest response value of 0.023, it strongly appears that the participant incorrectly
selected the country with the smallest response, so we change var to reflect that the participant

was looking for the response rather than the margin of error.

Similarly, 23 observations reflected a likely mistake for which extreme to select. For example, if
the participant was instructed to locate the country with the largest margin and he or she selected
the smallest. The same criterion is used, and the correction is to change the minmax variable to
either “largest” or “smallest.” As an example, the participant was instructed to select the country

with the largest response, and the country selected had a response value of 0.095 and the country
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with the largest response was 0.990, a difference of 0.895. The country with the smallest response
had a value of 0.027 for a difference of 0.068, so minmax was switched from “largest” to “smallest.”
(Though the reader might suggest that these participants were looking for the same extreme as the

previous question, only 4 of these observations followed that pattern.)

Lastly, six observations from the ESTIMATION test appeared to involve a switch in the variable.

4.2 Pre-Analysis

Based on the structure of the test and from observing the participants taking the test, we suspect
that a learning curve might exist. This learning might be in one of three roles: learning the interface
itself, for example getting accustomed to the layout of the page or the “prepare — click button —
observe — click country” cycle; learning to look through a technique to see the underlying response
choropleth, perhaps dealing with the technique as an obscuring or distracting element; or becoming

more familiar with each technique individually.

The variable we use as an indicator of time passage through the tests is seq, where the values
range from 1-36 (first 11 participants, LOCATION test), 1-24 (first 11 participants, ESTIMATION
test), or 1-36 (all others). The seq values restart at 1 for the ESTIMATION test, but since we will
be evaluating the LOCATION and ESTIMATION tests separately, that should not bias the results. We
will be subsetting the data not just on which test was performed but additionally by which var the

participant was instructed to find (response or margin), for a total of four models analysed.

To begin exploratory analysis, we can first examine the pairs plot to see if there are any obvious
patterns or relationships. Box-Cox calculations suggest logarithmic transformations on both re-
sponse variables time and error for all datasets. One of the pairs plots, shown in Figure 4.4,
presents the margin questions from the LOCATION test. (The plots for the other three datasets can
be found in Figures A.1, A.2, and A.3.) Though transforming the response variables did enable a
broader view of the plots, there are no clear patterns or relationships. It might be inferred, though,

that the response variables are behaving differently for each technique.

We will start model generation using linear regression and analysis of variance. The primary
intent is to identify if a learning curve is suggested, and to characterize this learning as linear
or non-linear. The models will suggest influence on variability by factors, but we won’t know
how accurate this is until we can take into account a longitudinal effect of learning as well as the

mixed-effects of id and svy.
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Scatterplots and ANOVA

Margin questions in the Location test
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Figure 4.4: Pairs plot for margin questions in the LOCATION test. The time and error variables
have been transformed logarithmically to help in visualization.

Next, we will use generalized additive models to see how we can approximate time progression
through seq. Once we can compensate for it, we will use that in mixed-effect models to block for
the per-participant variability in id and possible per-survey variability in svy. We contend that the
remaining variability will be better conditioned to evaluate the relative performance of individual

techniques.

37



4.3 Linear and Logistic Regression Models

4.3.1 LOCATION test, Response questions

We begin by reducing a main-effects linear regression to remove insignificant variables, shown in
Listing 4.1. The p-value of 7.16 x 107° for seq strongly suggests that seq is influential on the
model and that there is a learning effect. We update this model by adding seq® and perform an
analysis of variance (ANOVA) between the two models, resulting in a p-value of 0.0078, indicating

that a quadratic better approximates the passing of time in seq.

Listing 4.1: Linear regression of time in the LOCATION test, response questions. Display of the

id, svy, and tech indicator variables are abbreviated for brevity.

Call:
Im(formula = I(log(time)) ~ . - error - RV2 - seq.tech - click.MARGIN -
correct .RESPONSE - click.RESPONSE - click.area, data = data)

Residuals:
Min 1Q Median 3Q Max
-1.72382 -0.24905 -0.01727 0.26399 1.34239

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 1.0741523 0.1878170 5.719 2.04e-08 *xx*
svy2 0.1957987 0.1569165 1.248 0.2128

... 8VY ...

svy20 0.0223180 0.1594691 0.140 0.8888

id2 0.2053930 0.1475264 1.392 0.1646

R N R

id28 0.1745416 0.1490579 1.171 0.2423

seq -0.0118283 0.0026016 -4.547 7.16e-06 x**x*
techdiamonds -0.0196130 0.0791533 -0.248 0.8044
...tech...

techpole 0.0804444 0.0812621 0.990 0.3228
minmaxSMALLEST -0.1273162 0.0545389 -2.334 0.0200 =
correct .MARGIN -0.8365239 0.5326666 -1.570 0.1171
correct.area 0.0014323 0.0006492 2.206 0.0279 x*
Signif. codes: O ’*x%x’ 0.001 ’xx’ 0.01 ’%” 0.05 ’.” 0.1 °> 2> 1

Residual standard error: 0.4459 on 417 degrees of freedom
Multiple R-squared: 0.6707, Adjusted R-squared: 0.6273
F-statistic: 15.44 on 55 and 417 DF, p-value: < 2.2e-16

Not surprisingly, the categorical variables show varying amounts of influence: id appears to be

the strongest with p-values ranging from < 0.001 to 0.881; svy is showing mild influence ranging
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from 0.057 to 0.91; and tech is last with mild influencers ranging from 0.21 to 0.80. The variable
minmax appears to be a strong contributor with a p-value of 0.02, suggesting it is easier to look
through the technique to a higher response than a lower, lighter-colored value. The presence of
correct.margin might be interpreted as “small countries are hard to find,” and correct.area

suggests that the intended countries with smaller areas are harder to see.

The analysis of error is similarly performed, reduced?, and shown in Listing 4.2. Seq is removed
early in the reduction process, with its highest p-value before reduction of 0.62, suggesting no
learning curve in making errors. We update this model by adding seq® with a p-value of 0.731,
leading us to conclude that seq is not a contributor to variability, so perhaps there is no learning
curve in the estimation of response. This is not surprising since choropleths are relatively common

methods of presenting univariate data and therefore no training or learning is required.

Listing 4.2: Linear regression of error in the LOCATION test, response questions. Display of the

id, svy, and tech indicator variables are abbreviated for brevity.

Call:
Im(formula = I(log(le-04 + error)) ~ . - time - RV2 - seq.tech -

correct.area - seq, data = data)

Residuals:
Min 1Q Median 3Q Max
-2.9931 -1.0216 -0.3682 0.8646 9.7097

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -10.126281 2.763992 -3.664 0.000281 **x*
svy2 -1.412985 0.623357 -2.267 0.023920 *

. ..SVy ... NA NA 0.001 0.946906
svy20 0.252546 0.594164 0.425 0.671024

id2 -0.022811 0.548593 -0.042 0.966853
L.o.oid. . NA NA 0.057 0.972843
id28 -0.739401 0.553947 -1.335 0.182678
techdiamonds -0.293275 0.294452 -0.996 0.319829
...tech... NA NA 0.226 0.874220
techpole 0.193202 0.285414 0.677 0.498834
minmaxSMALLEST 2.156100 2.507204 0.860 0.390307
click.RESPONSE -7.187685 1.327980 -5.412 1.05e-07 *x**
click.MARGIN -7.550888 1.320387 -5.719 2.06e-08 *x*x*
click.area 0.003940 0.001609 2.449 0.014746 x*
correct .MARGIN 6.531802 2.033600 3.212 0.001421 =*x
correct .RESPONSE 10.120244 3.115337 3.249 0.001254 =*x

2By reduction, we mean an iterative process of analyzing the model, removing the highest not-significant factor,
and re-running. The categorical variables of id, svy, and tech were always retained.
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Signif. codes:

Residual standard error:

Multiple R-squared:

F-statistic:

0.3898,
4.651 on 57 and 415 DF,

Adjusted R-squared:

p-value:

1.654 on 415 degrees of freedom
0.306
< 2.2e-16

0 ?%x%x? 0.001 ’*%’> 0.01 ’%’ 0.05 *>.” 0.1 * > 1

Several of the same contributors from time are present in this model. New are click.response

and click.margin, suggesting darker colors (for response) and larger or more apparent shapes/tech-

niques (for margin of error) are less prone to error based on the sign of the coefficient estimates.

Not surprising is click.area, though it is counter-intuitive that a positive coefficient suggests that

larger areas lead to larger errors.

For all subsequent datasets, we reference Table 4.2, where we list the p-value associated with

adding or keeping seq, with adding seq + seq?, and with retaining the other variables. The order

of the columns, though slightly different from the description in the text, allows the reader to see

some patterns in significance. For instance, in the ESTIMATION test, seq and seq” are strongly

significant for time but not at all for error.

Table 4.2: Summary of ANOVA p-values for the four datasets on the addition of seq and seq +
2 . . . . . .

seq” and the retention of the remaining variables. R is for the questions related to response, and M

for margin of error. Gray cells are variables not present in that dataset. Empty cells are variables

that start in the model and are removed for lack of significant influence.

LOCATION Test

ESTIMATION Test

time error time error
Variable R | M R | M R M R | M
seq <0.01 <0.01 0.62 0.08 | <0.01 <0.01 0.71 0.82
seq + seq’ 0.01 0.90 0.78 0.04 | <0.01 <0.01 0.93 0.97
estimate <0.01 <0.01
click.area < 0.01 0.02
click.margin 0.10 <0.01 <0.01
click.response < 0.01 0.03
correct.area 0.03 0.17
correct.margin 0.12 0.10 <0.01 <0.01 0.12 0.08 < 0.01
correct.response 0.01 0.06 < 0.01
minmax 0.02 0.23 0.39 0.07

4.3.2 LOCATION test, Margin questions
The analysis of the margin questions is very similar to the response questions. (The output of

the linear regression can be found in Listing B.1.) Again, seq shows strong influence with a p-
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value of 0.0008, so the presence of a learning curve is supported. The addition of seq? is not
supported, demonstrated with a p-value of 0.896. We see the added relevance of click.area,
click.margin, and correct.margin, suggesting that the size of the selected country as well as
the degree of obscuration due to the margin of error. Minmax is retained for demonstration but

we do not propose strong relevance.

In the modeling of error, seq remains in the model with a p-value of 0.076, supporting the sus-
picion of a learning curve in evaluating the margin of error of the surveys. Furthermore, addition
of the quadratic improves the model with a p-value of 0.035. When compared with the analysis
of error in Section 4.3.1, we see the addition of click.response and correct.response, sug-
gesting the idea that the added techniques may be distracting the participant for both the response-

and margin-related questions.

4.3.3 ESTIMATION test, Response questions

In the ESTIMATION tests, we no longer have the minmax factor nor any of the click.* factors.
Time is highly sensitive to seq with a p-value of 9.4 x 10~7, and adding seq? is supported with
a p-value of 5.3 x 1078, The only other factor in the model is correct.margin with a p-value
of 0.116. From the lack of significance of most of the variables, we can infer that the participants
are relatively familiar with interpreting choropleth plots, and therefore the significance of time is

related to the distraction of having the techniques overlaid.

Error shows no influence by seq, showing a p-value of 0.712 for seq itself and 0.933 for seq+
seq?. There does not appear to be a learning curve associated with estimating the response values.
The estimated coefficient is negative, implying that the larger or more apparent the technique (due

to a high margin of error), the lower the error in estimating it.

4.3.4 ESTIMATION test, Margin questions

This model is very similar to the model from response, showing a p-value of 1.42 x 10~ for seq
and 2.86 x 1074 for seq+ seq®. The models also suggests influence by correct.margin and
slightly less influence by correct.area, though the positive coefficient estimate would mean that

larger countries correlate with longer response times.

The model for error is also very similar to the model of response, showing no significance with
seq or seq + seq?, and a strong influence from the estimate itself. However, with a positive
coefficient estimate (unlike the negative coefficient in the model of response) suggests what might

be less obvious, that the estimates are more accurate for lower margins of error in the plot.
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4.3.5 Logistic Regression Modeling

Our follow-on analysis will use the binary variable RV2 as the response, where we assign a value
of 1 indicating “fast and accurate” and a O otherwise. Table 4.3 shows the new data.

Table 4.3: Summary of ANOVA p-values from GLMs for the four datasets on the addition of seq

and seq + seq?. Comparison is using the x? test, where the null hypothesis states that there is
significant reduction in deviance with the augmented model.

LOCATION Test ESTIMATION Test
Variable Response \ Margin | Response \ Margin
seq 0.023 0.764 0.707 0.003
seq+seq? 0.075 | 0.076 0.121 |  0.001

A clear pattern emerges that, when using RV2 as the response variable in the logistic regression, the
quadratic of seq+ seq® appears significant in all four datasets, suggesting that a quadratic might

be sufficient to adequately model the learning curve through seq.

4.3.6 Univariate Wrap-up

Referencing Table 4.2, we again highlight some patterns that suggest further analysis. For the
time variable, three of the four datasets show significant influence by seq + seq?, and though the
exception (LOCATION test, margin questions) seems to be a high p-value, the overall model does
not suffer much with its inclusion: for the model with just seq, the F-statistic is 15.58 with 58
and 427 degrees of freedom, and the R-squared and adjusted R-squared are 0.6714 and 0.6284,
respectively; for the model with seq+ seq?, the F-statistic is 15.27 with 57 and 426 degrees of
freedom, and R-squared values of 0.6715 and 0.6275.

We also see significance in one of the four error datasets (LOCATION test, margin questions),
and considerable lack of significance in the other three. Finally, as we shift from using continuous
response variables to a binary response, we see that a quadratic of seq may be able to sufficiently

accommodate its variability and focus more on individual techniques.

4.4 Additive Models

In the previous section, we identified where the four datasets depict presence or lack of sensitivity
to seq in linear and non-linear forms. As an alternative to the logistic regression results, we explore

additive models for possibly finding a better fit. Instead of the logistic model and its form:

ﬂ p
In (—) — B0t Y B “.1)
=

1-7m
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we use the logistic additive model:

7[ p
j=1

where f; are smoothing functions, Z is the matrix for variables not modeled additively, and y are

the regression parameters (Faraway 2006, p. 229-230). In this case, x; consists of seq, and Z

contains all other factors. As we did in the GLMs, we will use RV2 as our binary response variable.

Looking at the results of the generalized additive model (GAM), we can visually see suggestions
of patterns and assess if and how we can sufficiently approximate the smoothed seq by using
quadratic formule. The remainder of the model is main-effects only, neither smoothed nor oth-
erwise transformed and without interactions®. The plotted results are provided in Figure 4.5. We
can see that the plot for the LOCATION test, Response questions (upper left plot) is largely linear,
implying that loess is sufficiently handling any non-linearity that seq might possess. The other

three plots suggest that there is still more variability in seq.

From an ANOVA we can reference the residual deviance and the y? test to measure the loss
of quality in the new transformation. We are trying to determine which type of model—Iloess-
smoothed, linear, quadratic, or no seq—better handles the time-series nature of the data. In Listing
4.3, we see the ANOVA comparison between the first (loess) model and the remaining three, for
the first dataset of LOCATION and response. These results are combined with the results from the
other three datasets in Table 4.4.

Listing 4.3: Summary of a generalized additive model model comparisons using RV2 in the LOCA-

TION test, response questions. The primary model utilized 1oess(seq) and is being compared

with models incorporating seq, seq + seq?, and seq excluded, respectively.

Analysis of Deviance Table

Model 1: RV2 ~ lo(seq) + (id + svy + seq + tech + minmax + click.area +
click.RESPONSE + click.MARGIN + correct.area + correct.RESPONSE +
correct.MARGIN) - seq

Model 2: RV2 ~ id + svy + seq + tech + minmax + click.area + click.RESPONSE +
click.MARGIN + correct.area + correct.RESPONSE + correct.MARGIN

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 410.69 251.08
2 413.00 252.03 -2.3064 -0.95001 0.6915

3Searching for interactions might provide predictive power or the knowledge of how specific underlying data (e.g.,
within the displayed survey plot) could cause problems with the display techniques. However, the data being displayed
is not a controlled variable, so determining how to maximize the interpretation of the technique given specific data is
not necessarily as useful.
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Loess smoothing of seq
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Figure 4.5: Loess smoothing of seq in each of the four datasets. A linear presentation of the loess
line (upper left) might indicate an adequately-approximated seq, whereas the other non-linear
presentations imply more variability in seq that smoothing does not cover.

Analysis of Deviance Table

Model 1: RV2 ~ lo(seq) + (id + svy + seq + tech + minmax + click.area +
click.RESPONSE + click.MARGIN + correct.area + correct.RESPONSE +
correct.MARGIN) - seq

Model 2: RV2 ~ id + svy + seq + tech + minmax + click.area + click.RESPONSE +
click.MARGIN + correct.area + correct.RESPONSE + correct.MARGIN +

I(seq~2)
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 410.69 251.08
2 412.00 252.02 -1.3064 -0.94577 0.4296

Analysis of Deviance Table
Model 1: RV2 ~ lo(seq) + (id + svy + seq + tech + minmax + click.area +

click.RESPONSE + click.MARGIN + correct.area + correct.RESPONSE +
correct.MARGIN) - seq
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Model 2: RV2 ~ (id + svy + seq + tech + minmax + click.area + click.RESPONSE +
click.MARGIN + correct.area + correct.RESPONSE + correct.MARGIN) -

seq

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 410.69 251.08
2 414.00 257.20 -3.3064 -6.1204 0.1292

In Table 4.4, the “Resid” number on the left of each column indicates the relative change of the
residuals deviance when comparing the base model of 1loess(seq) with no seq, seq, and seq+
seq?, respectively. This confirms that the loess is better at reducing the residual deviance, but it
also shows that the quadratic (seq + seq?) is closest in all three cases. The next step will be to use
mixed-effects models to block for id, svy, and account for the time-series nature of seq, in order

to focus on tech.

Table 4.4: Summary of ANOVA p-values from GAMs for the four datasets on removal of
loess(seq) and the addition of seq and seq+ seq®. Comparison is using ANOVA and the
x? test, where the null hypothesis states that there is significant reduction in deviance with the
augmented model.

LOCATION Test ESTIMATION Test
Response Margin Response Margin
Variable Resid P-value | Resid P-value | Resid P-value | Resid P-value
Baseline Resid | 251.08 404.82 442 .91 234.65
seq 252.03 0.692 | 415.47 0.007 | 452.07 0.015 | 241.36 0.055
seq+seq’ 252.02 0.430 | 410.39 0.027 | 447.99 0.039 | 236.49 0.283
(no seq) 257.20 0.129 | 415.56 0.017 | 452.22 0.034 | 250.20 0.002

At this point, we have two models to test for significance of between-technique differences of
variation: the quadratic model derived from the GLMSs, and the loess model from the GAMs. We
believe the loess models will provide a better goodness of fit, but to compare these models we need

to block for the mixed effects, namely id and svy.

4.5 Mixed-Effect Analysis

We believe there may be considerable variation between participants. As an example of this, see
Figure 4.6. As we block for id in the models, one question we need to resolve is whether this
variation is both in the intercept and the slope of the trends. Another way of thinking of this is
that each participant might have his or her own learning curve based on prior experience as well as
aptitude. To check for this, we fit models blocking for both the intercept and the slope and compare
the goodness-of-fit.
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Time To Respond, Sequenced, Per Technique
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Figure 4.6: Time per sequence, colored by technique and paneled by participant. The important
point to take from these plots is the difference in variability in time between participants. Error
per sequence is provided in Figure B.1.

We have already identified the random-effects variables in the model: id and svy. For each of
the four datasets, we create three models using the 1me4 package from R (Bates et al. 2013), as

follows:

Imer (RV2 ~ loseq+ . +(1]|id) + (1|svy), family = binomial) 4.3)
Imer (RV2 ~ loseq+ . + (seq|id) + (1|svy), family = binomial) (4.4)
Imer (RV2 ~ seq+seq® + . + (1|id) + (1|svy), family = binomial) 4.5)

Imer (RV2 ~ seq + seq’ + . +(seq|id) + (1|svy), family = binomial ) , (4.6)
where loseq is a new variable created from the loess smoothing function on the original seq data,
(1]iq) is the notation for blocking for different intercepts among the id effects, and (seq|id) is the
notation for blocking for both the intercept and slope of id with respect to the time-progressing
variable, seq. Table 4.5 lists the Akaike information criterion (AIC) and Bayesian information

criterion (BIC) for the four datasets.

If we adhere to the AIC for comparing model goodness-of-fit, we have strong indications to use the
slightly more complicated equations (4.4) or (4.6) in the LOCATION / response dataset, and just
equation (4.6) in ESTIMATION/response. The BIC, however, is dominated by the loess intercept-

46



Table 4.5: Comparison of AIC and BIC for the datasets and various mixed-effects models.

AIC Location test Estimation test
Response Margin | Response Margin
loseq (1]id) 357.42  560.45 572.66 375.14
(seq|id) 351.11 563.94 591.93  376.39
seq+ seq? (1]id) 359.21 567.23 580.76  378.45
(seq|id) 355.09 570.92 579.87  380.80

BIC Location test Estimation test
Response Margin | Response Margin
loseq (1]id) 428.12  631.55 629.45  430.95
(seq|id) 430.13  643.40 656.84  440.18
seq+ seq? (1]id) 434.07 642.51 641.61  438.25
(seq|id) 438.27  654.56 648.83  448.57

only model, (4.3), for all four datasets and both formule. If we adhere to the premise that simpler
is more often correct—and because we are making several assumptions in the our analysis, this is

justified—we honor the bias towards the intercept-only models.

At this point, we’ve controlled for as much variability as we can isolate, so we can now examine
the variability within the techniques themselves. Using the intercept-only models, we perform a
comparison between equations (4.3) and (4.5). A straight-forward comparison looks for lack of
overlap in their confidence intervals, calculated by p +2 (o /y/n). The mixed-effects regression
results are listed in Table 4.6, and the approximate 95% confidence intervals of the estimates are
plotted in Figures 4.7 and 4.8.

Between the two figures, there are few differences in other than small shifts in location. This
tells us that the quadratic sufficiently characterizes the relative performance of the techniques.
The loess model does provide a few key differences, providing a few more statistically-significant

differences.

Looking just at the loess model figure, the LOCATION/margin dataset shows considerable perfor-
mance difference, specifically that diamonds and dots clearly perform below the rest, and hexes
and pole perform significantly better than three of the four others. In contrast, for the ESTIMA-
TION/response dataset places diamonds above dots and hexes. And ESTIMATION/svymargin puts

hexes above diamonds, dots, and pole.
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Table 4.6: Regression coefficients for tech variables for both the loess-based and quadratic-based
models. The technique “circspacing” is the baseline level from which the others are compared,
which is why its estimate is O for all models.

Loess Quadratic

TEST Question Tech Estimate StdErr | Estimate StdErr
circspacing 0.000  0.055 0.000 0.056

diamonds 0.057 0.055 0.060 0.056

Response dots -0.017  0.055 -0.009  0.055

hexes -0.021  0.056 -0.016  0.056

onebar -0.009  0.057 0.008 0.057

LOCATION pole 0.015 0.056 0.026  0.058
circspacing 0.000  0.069 0.000 0.070

diamonds -0.216  0.068 -0.202  0.068

Margin dots -0.177  0.071 -0.156  0.071

hexes 0.140  0.067 0.122  0.067

onebar 0.101  0.066 0.096 0.068

pole 0.207  0.067 0.200  0.069

circspacing 0.000  0.080 0.000 0.081

diamonds 0.128  0.077 0.127  0.078

Response dots -0.094  0.081 -0.068  0.080

hexes -0.083  0.079 -0.045  0.080

onebar 0.060 0.079 0.068 0.081

ESTIMATION pole 0.027  0.078 -0.007  0.080
circspacing 0.000  0.065 0.000 0.066

diamonds -0.023  0.065 -0.022  0.065

Margin dots -0.074  0.066 -0.060  0.066

hexes 0.110 0.064 0.114  0.064

onebar 0.027  0.064 0.029 0.064

pole -0.029  0.066 -0.025  0.067
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95% Confidence Intervals for Loess Coefficients

Factor-Level Coefficient (higher is better)
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Figure 4.7: Confidence intervals the coefficient estimates in the loess-based models. The high-
lighted “significant differences” are between the loess and the quadratic coefficients for the tech-

niques.
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Figure 4.8: Confidence intervals for the coefficient estimates in the quadratic-based models.
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CHAPTER 5:

Conclusion

Tables 4.2 and 4.3 show there are interesting patterns in the relationships between seq and the
response variables. An experiment using human participants is always prone to subjectivity and
a relatively high amount of background variability, and this is certainly no exception. However,

patterns can be detected and inferences made.

5.1 Interpretation of Significance

The linear regression models suggest that the time to locate or estimate values of desired countries
is highly subject to a learning curve, whereas the the error for that location or estimation does not.
The participants were essentially given as much time as they needed, so if they needed to take
60 seconds to satisfy their own level of “enough understanding,” then the learning curve would
be reflected in the time variable and not in the error. Said another way, they knowingly took
more time in order to achieve a comfortable personal confidence level for their selection. Had the
experiment instead forced them to respond within 12 seconds, for example, the data might show

more significance in the analysis of error.

Intuitively, the reader might presume that there would be a different learning curve between ques-
tions that ask for the response—which utilizes a well-known technique—and questions that ask
for the margin of error—which uses the newly-introduced techniques. The learning curve for
looking at the response is possibly related to having to mentally look “through” the secondary
technique in order to interpret the color underneath, essentially trying to disregard the distraction
or obscuration of the margin of error. Table 4.3 suggests that the LOCATION tests show a linear
vice quadratic relationship, supporting this intuition, whereas ESTIMATION tests require more of a
non-trivial learning process to interpret. In the former, the participant merely has to learn how to
focus on the color and not learning about the color itself. In the latter, he or she must not only try
to disregard the (possibly distracting) color of the response, but might also have to concentrate on

interpreting the new shapes.

As stated in Section 4.1, we believe that we do not have independence between a learning curve
in the LOCATION test and in the ESTIMATION test: put simply, the participant has spent the last
ten minutes already becoming acquainted with the new techniques. If the second half of the test

were cognitively as simple as the first half where all he or she had to do was locate a country, then
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the learning curve would almost certainly have been shallower and perhaps more linear. However,
we compound the dependence between the two by introducing a new task: estimating the value
of the shapes. This takes considerably more understanding of the relationship between shape
size, spacing, or angle, in order to adequately understand what the plot is telling you. (We might
compare this additional mental load to any new task: seeing and recognizing it are one thing,

whereas actually doing it or teaching it requires a much deeper understanding of the material.)

Our assertion that a quadratic transformation on seq is supported, as shown in Table 4.6 and Fig-
ures 4.7 and 4.8. That is, the differences between the two transformations are minor, evidencing
more in small shifts in location than with any significant change in standard errors of the coeffi-

cients.

5.2 Subjective Participant Responses

After each participant finished the test, they often provided their opinions on individual techniques
or on the interface as a whole. Several people suggested, for instance, that we provide to them
more information about the pole technique, so that they would know what the black ticks indicated
numerically. This was certainly good feedback, but what is interesting is that the information was
provided from the beginning, telling the participant that each tick represented 5% increase in the
margin of error. Each time each technique was used, the left third of the computer screen included
text describing that individual technique. The relevance of this is that most people did not read the
instructions, they just jumped into the test and performed relatively well. That may speak to the

relative intuitiveness of the interface and possibly the techniques.

5.3 Technique Roll-up

The original question, somewhat briefly, is: “Which technique is best?” The answer is: “It de-
pends,” mostly on the goal of the plot. Figure 5.1 shows relative performance in four different
scenarios, where the closer a dot is to the lower-left corner of the axes, the better overall the tech-

nique performs.

If the presenter needs the observers to focus on the performance of the primary variable and tan-
gentially recognize extreme values of the secondary variable, then “Recognize Primary Variable”
(lower right) shows that diamonds is the best performing. In this case, error in estimation is not
a problem, and aesthetically it could be argued that the colors do not interfere too much with the
plot, even though there was evidence to show that it caused slightly more inaccuracy in interpreting
the primary variable.
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Figure 5.1: Relative performance of all of the techniques in various situations.

“Estimate Both Variables” (upper right) is more appropriate when the observers need to try to
quantify the values in various regions in the plot. This is the hardest category in which to rank the

techniques, as you can get either “easy” (less time) or “effective” (less inaccurate), but not both.
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The other two corners provide slightly different insight into the performance of the techniques. In
many cases, a technique is perfectly suited for one situation (e.g., diamonds in the lower right) and

the worst performer in others (e.g., diamonds in the lower left).

5.4 Future Work

The design of experiments for varying and controlling factors in the experiment presented numer-
ous options and insight but also considerable problems with a relatively smaller sample-size. For
instance, the use of the interaction var X minmax might be useful to determine optical illusions
where countries that are highly-obscured with the secondary variable are more or less likely to be
connected with an extreme in the response. Even simpler, minmax did not weigh in as a strongly-

significant factor in most of the test, but contributed variability nonetheless.

Similarly, requiring the observer to alternate randomly between looking at the response and mar-
gin of error—as well as alternating randomly between other two-level factors—created a frequent
and easy opportunity for confusion, evidenced by our assertions of swapped variables in Section
4.1.3, Data Cleaning. Limiting the exposure of the participant to just one variable, or perhaps one
variable for long stretches, would minimize the potential for confusion based solely on this factor,

an admittedly unimportant effect in the experiment.

We focused heavily in this thesis on the effects of a possible learning curve, and how we could
control for its variability in the data. Another piece of the sequencing that we did not analyze
in this paper is the sequence within-technique instead of sequence within the test as a whole.
For instance, if on a participant’s fifth question we present the hexes technique for the first time,
then that observation’s seq value is 5 but its seq. tech value is 1. This would provide insight into
different learning curves per technique (either intercept-only or intercept and slope). Unfortunately,
the n of this experiment did not provide enough power or degrees of freedom to subset the data this

much and still derive useful statistics.

Another way that the learning curve can be controlled, measured, or even isolated (see Section 4.2
for three suggested types of learning curves) would be to provide a pre-training period. Though
the techniques to be tested should not be used in this training, the mechanics of the test and the

interface could be countered, as well as having to “look through” one variable to see the other.

After participants finished the experiment, they would typically provide feedback for the tech-
niques or the interface itself. Because we did not track personally-identifiable information in the

experiment, it is impossible to see if what they observed to be difficult actually performed differ-
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ently; this relationship between perception and reality can be measured with, for example, a survey,

where participants can rate each technique and how they feel they did with each technique.
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APPENDIX A:

Univariate Plots

Scatterplots and ANOVA

Response questions in the Location test
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Figure A.1: Pairs plot for response questions in the LOCATION test. The time and error vari-

ables have been transformed with a logarithm to help in visualization. The pairs plot for the margin
questions can be found in Figure 4.4.
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Scatterplots and ANOVA

Response questions in the Estimation test
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Figure A.2: Pairs plot for response questions in the ESTIMATION test. The time and error
variables have been transformed with a logarithm to help in visualization.
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Scatterplots and ANOVA

Margin questions in the Estimation test
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Figure A.3: Pairs plot for margin questions in the ESTIMATION test. The time and error variables
have been transformed with a logarithm to help in visualization.
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APPENDIX B:
Regression Model Output

Listing B.1: Linear regression of time in the LOCATION test, margin questions. Display of the id,
svy, and tech indicator variables are abbreviated for brevity; the range of the removed p-values is

listed on the replaced row.

Call:
Im(formula = I(log(time)) - error - RV2 - seq.tech - correct.RESPONSE -
click.RESPONSE - correct.area, data = data)
Residuals:
Min 1Q Median 3Q Max

-1.23785 -0.26516 0.01044 0.25276 .22857
Coefficients:

Estimate Std. Error value Pr(>|t])
(Intercept) 0.7946908 0.7306043 1.088 0.277334
svy2 0.1025250 0.1305236 0.785 0.432602
...8Vy ...
svy20 0.0838265 0.1507742 0.556 0.578520
id2 0.1165804 0.1549244 0.752 0.452166
Loodid. ..
id28 0.3957488 0.1588036 2.492 0.013079 =*
seq -0.0074694 0.0022009 -3.394 0.000754 *xx
techdiamonds 0.1833739 0.0754401 2.431 0.015480 =*
...tech...
techpole -0.0340301 0.0743998 -0.457 0.647620
minmaxSMALLEST 0.7615218 0.6263296 1.216 0.224714
click.MARGIN -1.5906871 0.9581762 -1.660 0.097625
click.area -0.0020397 0.0003561 -5.727 1.93e-08 *x*x
correct . MARGIN 4.9158927 3.0113649 1.632 0.103323
Signif. codes: 0O ?xxx? 0.001 ’*xx”> 0.01 ’x” 0.05 ’.” 0.1 > > 1

Residual standard error:

Multiple R-squared:

F-statistic:

Adjusted R-squared:

p-value:

< 2.2e

0.429 on 427 degrees of freedom
0.6714,
15.58 on 56 and 427 DF,

0.6284
-16

Listing B.2: Linear regression of error in the LOCATION test, margin questions. Display of
the id, svy, and tech indicator variables are abbreviated for brevity; the range of the removed

p-values is listed on the replaced row.

Call:

Im(formula = I(log(le-04 + error)) - time - RV2 - seq.tech -
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correct.area - click.area, data = data)

Residuals:
Min 1Q Median 3Q Max
-5.4177 -1.55631 -0.3616 1.3948 6.6647

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) -17.03520 4.04900 -4.207 3.15e-05 *x**
svy2 1.24394 0.66519 1.870 0.062163
...SVy ... NA NA 0.000 0.607305
svy20 2.16148 0.88738 2.436 0.015268 =
id2 -0.45791 0.76808 -0.596 0.551378
Lid. .. NA NA 0.031 0.964443
id28 -1.76882 0.78569 -2.251 0.024876 *
seq 0.01941 0.01090 1.781 0.075604
techdiamonds 1.71492 0.37438 4.581 6.09e-06 **x*
...tech... NA NA 0.610 0.773928
techpole -0.56513 0.37049 -1.525 0.127918
minmaxSMALLEST 6.16861 3.36076 1.835 0.067131
click.RESPONSE 0.92323 0.42261 2.185 0.029462 x*
click.MARGIN -16.09617 4.77965 -3.368 0.000827 *x*xx*
correct .MARGIN 44.13617 15.87819 2.780 0.005682 *x
correct . RESPONSE 1.39252 0.73811 1.887 0.059892
Signif. codes: O ’*x%x’ 0.001 ’xx’ 0.01 ’%” 0.05 ’.” 0.1 °> 2> 1

Residual standard error: 2.121 on 426 degrees of freedom
Multiple R-squared: 0.3125, Adjusted R-squared: 0.2205
F-statistic: 3.397 on 57 and 426 DF, p-value: 4.22e-13

Listing B.3: Linear regression of time in the ESTIMATION test, response questions. Display of
the id, svy, and tech indicator variables are abbreviated for brevity; the range of the removed

p-values is listed on the replaced row.

Call:
Im(formula = I(log(time)) ~ . - error - RV2 - seq.tech - correct.area -
correct .RESPONSE - estimate, data = data)

Residuals:
Min 1Q Median 3Q Max
-0.67167 -0.21896 -0.02594 0.17462 1.83656

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 1.338464 0.132681 10.088 < 2e-16 *x*x

svy2 0.079382 0.113699 0.698 0.4855
.SVy ...

svy20 0.039614 0.119970 0.330 0.7414

id2 0.191769 0.144654 1.326 0.1857
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Loid...

id28 0.213588 0.127902 1.670 0.0958

seq -0.011667 0.002339 -4.988 9.39e-07 x*xx*x*
techdiamonds -0.119755 0.065690 -1.823 0.0691
...tech...

techpole -0.028259 0.066020 -0.428 0.6689

correct .MARGIN 0.469014 0.297648 1.576 0.1159

Signif. codes: O ’*x%x’ 0.001 ’xx’ 0.01 ’x” 0.05 ’.” 0.1 °> ’> 1

Residual standard error: 0.3562 on 373 degrees of freedom
Multiple R-squared: 0.7007, Adjusted R-squared: 0.6582
F-statistic: 16.48 on 53 and 373 DF, p-value: < 2.2e-16

Listing B.4: Linear regression of time in the ESTIMATION test, margin questions. Display of
the id, svy, and tech indicator variables are abbreviated for brevity; the range of the removed

p-values is listed on the replaced row.

Call:
Im(formula = I(log(time)) ~ . - error - RV2 - seq.tech - estimate -
correct .RESPONSE, data = data)

Residuals:
Min 1Q Median 3Q Max
-0.96595 -0.25818 -0.02995 0.21906 1.62991

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 1.3351596 0.1886553 7.077 8.34e-12 *xx%
svy2 0.0670414 0.1543894 0.434 0.66439
. SVY ...
svy20 0.0093744 0.1354032 0.069 0.94484
id2 0.0349035 0.1872979 0.186 0.85228
..oid. ..
id28 0.5028317 0.1782509 2.821 0.00507 *x*
seq -0.0137489 0.0025581 -5.375 1.42e-07 **x*
techdiamonds 0.0615356 0.0779618 0.789 0.43048
...tech...
techpole 0.1024772 0.0799172 1.282 0.20061
correct .MARGIN 0.6313386 0.3589594 1.7569 0.07950
correct.area 0.0005766 0.0004183 1.378 0.16896
Signif. codes: O ’#*%x’ 0.001 ’#*%° 0.01 ’x> 0.05 °>.” 0.1 > > 1

Residual standard error: 0.4059 on 343 degrees of freedom
Multiple R-squared: 0.6106, Adjusted R-squared: 0.5493
F-statistic: 9.96 on 54 and 343 DF, p-value: < 2.2e-16
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Listing B.5: Linear regression of error in the ESTIMATION test, response questions. Display
of the id, svy, and tech indicator variables are abbreviated for brevity; the range of the removed

p-values is listed on the replaced row.

Call:
Im(formula = I(log(le-04 + error))

- time - RV2 - seq.tech -

seq - correct.MARGIN - correct.area, data = data)

Residuals:
Min 1Q Median 3Q Max
-4.3352 -0.9103 0.1191 1.0239 5.0067

Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) -6.1146 0.6492 -9.419 < 2e-16 *x*
svy2 -0.9253 0.5272 -1.755 0.08005
...8Vy ... NA NA 0.037 0.96616
svy20 -0.2013 0.5694 -0.353 0.72393

id2 0.5358 0.6722 0.797 0.42588
L.o.odid. .. NA NA 0.026 0.99474
id28 -0.1117 0.5956 -0.187 0.85138
techdiamonds 0.1528 0.3066 0.498 0.61849
...tech... NA NA 0.147 0.19236
techpole 0.8692 0.3002 2.895 0.00402 x*x
estimate -3.8901 0.6680 -5.823 1.25e-08 *%*x*
correct .RESPONSE 5.2297 0.6783 7.710 1.15e-13 *x%
Signif. codes: O ’#**x’ 0.001 ’#*%’ 0.01 ’x> 0.05 °>.” 0.1 * *> 1

Residual standard error: 1.656 on 373 degrees of freedom
Multiple R-squared: 0.3173, Adjusted R-squared: 0.2203
F-statistic: 3.271 on 53 and 373 DF, p-value: 1.904e-11

Listing B.6: Linear regression of error in the ESTIMATION test, margin questions. Display of
the id, svy, and tech indicator variables are abbreviated for brevity; the range of the removed

p-values is listed on the replaced row.

Call:
Im(formula = I(log(le-04 + error)) ~ . - time - RV2 - seq.tech -

correct.area - seq - correct.RESPONSE, data = data)

Residuals:
Min 1Q Median 3Q Max
-2.4863 -0.8777 -0.0607 0.8393 b5.5851

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -6.659554 0.599861 -11.102 < 2e-16 **x
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svy2 -0.633453 0.494024 -1.282 0.2006

L. SVY ... NA NA 0.084 0.9645

svy20 -0.641302 0.435344 -1.473 0.1416

id2 -0.226443 0.606163 -0.374 0.7090

L.ooid. . NA NA 0.117 0.9704

id28 0.001756 0.574113 0.003 0.9976

techdiamonds 0.585031 0.252368 2.318 0.0210 =
.tech... NA NA 0.000 0.6780

techpole -0.507206 0.256990 -1.974 0.0492 =

estimate 8.794849 0.994351 8.845 < 2e-16 *xx

correct . MARGIN -9.228746 1.464384 -6.302 8.99e-10 ***

Signif. codes: O ’*%x’ 0.001 ’x%’ 0.01 ’%”> 0.05 ?>.? 0.1 > *> 1

Residual standard error: 1.313 on 344 degrees of freedom
Multiple R-squared: 0.4065, Adjusted R-squared: 0.3151
F-statistic: 4.445 on 53 and 344 DF, p-value: < 2.2e-16

Error in the Response, Sequenced, Per Technique

Sample of All Participants Colors are Per—Technique
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Figure B.1: Error per sequence, colored by technique and paneled by participant. The important
point to take from these plots is the difference in variability in error between participants.
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